Tasks To Automate With Python

1 Check JSON

Read a file and check either file contains a valid JSON data or not.

Program

import os
import sys
import json

if len(sys.argv) > 1:
    if os.path.exists(sys.argv[1]):
        file = open(sys.argv[1], "r")
        json.load(file)
        file.close()
        print("Validate JSON!")
    else:
        print(sys.argv[1] + " not found")
else:
    print("Usage: check_json.py <file>")

Run the Script

python3 check_json.py test.json

2 Check YAML

Read a file and check either file contains a valid YAML data or not.

import os
import sys
import yaml

if len(sys.argv) > 1:
    if os.path.exists(sys.argv[1]):
        file = open(sys.argv[1], "r")
        yaml.safe_load(file.read())
        file.close()
        print("Validate YAML!")
    else:
        print(sys.argv[1] + " not found")
else:
    print("Usage: check_yaml.py <file>")

Run the Script

python3 check_yaml.py test.yaml

3 Convert JSON to YAML

Read a json file and convert json data into the yaml format and store into the output yaml file.

import json
import os
import sys
import yaml

# Checking there is a file name passed
if len(sys.argv) > 1:
    # Opening the file
    if os.path.exists(sys.argv[1]):
        source_file = open(sys.argv[1], "r")
        source_content = json.load(source_file)
        source_file.close()
    # Failikng if the file isn't found
    else:
        print("ERROR: " + sys.argv[1] + " not found")
        exit(1)
# No file, no usage
else:
    print("Usage: json2yaml.py <source_file.json> [target_file.yaml]")

# Processing the conversion
output = yaml.dump(source_content)

# If no target file send to stdout
if len(sys.argv) < 3:
    print(output)
# If the target file already exists exit
elif os.path.exists(sys.argv[2]):
    print("ERROR: " + sys.argv[2] + " already exists")
    exit(1)
# Otherwise write to the specified file
else:
    target_file = open(sys.argv[2], "w")
    target_file.write(output)
    target_file.close()

Run the Script

python3 json2yaml.py input_file.json output_file.yaml

4 Convert YAML to JSON

Read a yaml file and convert yaml data into the json format and store into the output json file.

import json
import os
import sys
import yaml

# Checking there is a file name passed
if len(sys.argv) > 1:
    # Opening the file
    if os.path.exists(sys.argv[1]):
        source_file = open(sys.argv[1], "r")
        source_content = yaml.safe_load(source_file)
        source_file.close()
    # Failikng if the file isn't found
    else:
        print("ERROR: " + sys.argv[1] + " not found")
        exit(1)
# No file, no usage
else:
    print("Usage: yaml2json.py <source_file.yaml> [target_file.json]")

# Processing the conversion
output = json.dumps(source_content)

# If no target file send to stdout
if len(sys.argv) < 3:
    print(output)
# If the target file already exists exit
elif os.path.exists(sys.argv[2]):
    print("ERROR: " + sys.argv[2] + " already exists")
    exit(1)
# Otherwise write to the specified file
else:
    target_file = open(sys.argv[2], "w")
    target_file.write(output)
    target_file.close()

Run the Script

python3 yaml2json.py input_file.yaml output_file.json

Explore More Python Posts

Pystache Python Library for Template Rendering

Discover the Pystache Python library for template rendering. Learn its use cases, advantages, disadvantages, and alternatives. Start coding efficient…

Read More
Python's Match Statement: Examples & Tips

Learn Python's match statement with examples. Simplify branching logic and enhance code readability. A must-know for Python developers!

Read More
Using Twitter API with Python: Getting Tweets & Insights

Learn how to use the Twitter API with Python to get tweet information and insights. Extract valuable data for businesses and researchers with ease.

Read More
Accessing Facebook Data with Python: Examples for Post Likes, Views, and Profile Details

Learn how to access Facebook data using Python and the Facebook API. Get post likes, views, and comments, and retrieve profile details.

Read More
Python Design Patterns: Examples and Best Practices

Learn about Python design patterns with examples and discover best practices for writing maintainable and scalable code.

Read More
How to Use the YouTube API with Python: A Step-by-Step Guide

Learn how to access and retrieve information from YouTube using Python and the YouTube API. Get code examples and step-by-step instructions for impor…

Read More